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Plan for this session

Introduction to Fine-tuning LLMs (25 min - Slides)

- Overview of key concepts, tools, and techniques
Hands-on: Setting up the Pipeline (30 min - Practical)

- Code walkthrough and dataset preparation for fine-tuning
Discussion and Q&A (20 min - Interactive)

- Share experiences and troubleshoot during fine-tuning
Results Review and Closing (5 min - Recap)

- Inspect results and discuss insights



Synthetic data created with LLMs
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Simple “prompting” LLM approaches/Silicon sampling

% German Longitudinal Election Study

| am awomen, 50 years | voted for the xy party.
old ... which party did |
vote for? | [INSERT]

Variable values for ~2000 voting-eligible Created ~2000 prompts by inserting the Get back ~2000 filled-in prompts
participants in the post-election cross-section values into our prompt template and prompt from the LLM
of the GLES the respective LLM

(von der Heyde et al. 2023)



Problems with silicon sample approaches

Uniformity
- Difficult to capture the diversity and inconsistency that characterize human individuals and
groups
Temporality
- LLMs struggle with temporality (datasets they are trained on often lack accurate
timestamps, older datasets) making it difficult to model time-sensitive cultural shifts
Linguistic representation
- Uneven performance across languages
Limited sensory representation
- LLMstrained only on text, limiting their ability to fully capture human experiences



Fine-tuning vs In-context learning

In-context learning
The LLM “learns” to perform a task at inference time, e.g., zero-shot, few-shot

- Best proprietary models are designed to be used in-context
- Less technical knowledge needed
- Lesstimeintensive

Fine-tuning
The LLM “learns” by changing the weights while training on new data

- Best performance for specific tasks

- Not that prompt dependent

- Inference efficiency

- Open-source models are used -> Works with private data



Hernandez et al. (2022)
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Figure1 We display the performance of a 40M parameter transformer model on python, both trained
from scratch on python and pre-trained on text then fine-tuned on python. D is the amount of addi-
tional python characters that a from-scratch model of the same size would have needed to achieve the same
loss on python as a fine-tuned model. In the labeled example, we see that for a 40M parameter transformer
fine-tuned on 3e5 characters, D is approximately 1000x bigger than D . The less fine-tuning data is avail-
able, the more pre-training helps.



Quality vs
Quantity

Performance scales more
with data quality than with
data quantity
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Figure 5: Performance of 7B models trained
with 2,000 examples from different sources. Fil-
tered Stack Exchange contains diverse prompts
and high quality responses; Unfiltered Stack
Exchange is diverse, but does not have any qual-
ity filters; wikiHow has high quality responses,
but all of its prompts are “how to” questions.
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Figure 6: Performance of 7B models trained

with exponentially increasing amounts of data,

sampled from (quality-filtered) Stack Exchange.

Despite an up to 16-fold increase in data size,
performance as measured by ChatGPT plateaus.

Zhou et al. (2023)



Fine-Tuning Large Language Models to Simulate
German Voting Behaviour

Motivation

Try to improve on the GPT-3.5 results from von der Heyde et al. (2024)

- Background knowledge of LLMs has potential for missing data problems (Narayan et al., 2022)
- Improvements in computational efficiency of fine-tuning with QLoRA (Dettmers et al., 2023)

- Open-source models are catching up in performance (Dubey et al., 2024)

Implementation

- Train LLMs on prompts generated from 2017 GLES survey data and predict the participants vote choice
- Answer the following research questions:
- RQ1: Do fine-tuned LLMs offer a significant advantage over zero-shot LLMs in predicting voting
choices in Germany?
- RQ2: Are fine-tuned LLMs more effective than established methods for addressing missing data
problems in survey research?



Instruction

GLES 2017
post-election
cross-section
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stratified 5-fold
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Method: Prompt Design

- Theinstruction is added for a strong
zero-shot baseline

- Survey questions and answers are
reduced to short “item: answer” pairs

Instruction

Survey items

Vote

Prompt design

Please perform a classification task. Given the survey answers
from a national post election survey in Germany, return which
party the person voted for. Return a label from ['CDU/CSU',
'SPD!, 'Greens', 'FDP!, 'Left', AfD', 'Small party', 'Non-voter'] only
without any other text.

Year: 2017

Age: 52

Gender: female

Education: Secondary school certificate
Income: 3000 to under 4000 Euros
Employment Status: Full-time employed
Religiosity: somewhat religious
Left-Right-ldeology: rather left

Party Identification: SPD

Party ID Strength: rather strong
Residency: West Germany

Att. Immigration: rather negativ
Reducing inequality: strongly agree

SPD




Method: Experiments

EQ1 Comparison to zero-shot prediction

- Data-subsets of stratified 5-fold train/test splits

- Train Llama-3-8B on the train-set

- Evaluate mean performance of fine-tuned Llama against zero-shot Llama
and the GPT-3.5 performance reported by von der Heyde et al. (2024)

EQ2a Systematic non-responses

- Exclude survey respondents that identify with a certain party
- Evaluate on the same test set as EQ1, against different established tabular
data classifiers

EQ2b Sample efficiency

- Exclude a certain ratio of respondents in the training set (stratified)
- Evaluate on the same test set as EQ1, against different established tabular
data classifiers

EQ1

EQ2a

EQ2b

Complete
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Results: RQ1

The fine-tuned Llama-3 model
outperforms the zero-shot models for

all parties ,

The fine-tuned Model still struggles _

with the ideological diverse small

parties '

LLMs tend to under-predict '

right-leaning parties ‘
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Results: RQ2

EQ2a: Systematic non-responses EQ2b: Sample efficiency
- The fine-tuned performance is &
better than traditional models 50
when the training data is 240
imbalanced. £
. <
- The fine-tuned performance is 20
better than traditional methods i
with heavily reduced sample _——" 0% 6% A% 2% 0% S 1%
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SlZes. Party ID excluded from training Training samples [%, total]
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mm | lama-3-8B fine-tuned === Random forest == Llama-3-8B zero-shot  =+=+: Majority class classifier

able to help with biased or very
limited survey data
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Discussion

- RQ1 Fine-tuned open-source LLMs are more effective in predicting voting behaviour than
zero-shot approaches and can reduce their pre-trained political biases

- RQ2 The fine-tuned model outperformed established methods, showing improved vote
prediction when trained with biased data and remaining robust with reduced training data

> Fine-tuned LLMs might enable imputation of previously hard-to-impute survey data and make
new planned missing date survey designs possible

Limitations

- Fine-tuning is still considerably more computationally expensive than zero-shot inference and traditional
imputation methods
- Requires a certain amount of participants as opposed to zero-shot approaches



Training on Twitter Data to Predict Survey Results
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Figure 1: Illustration of Temporal Adapters. First, we gather weekly text data from a panel of Twitter users and fine-tune
Temporal Adapters for Llama 3 8B with it. Then, we prompt the fine-tuned model with established survey questions, one week

at a time, and extract affect aggregates from the answer options’ token probabilities. Temporal Adapters enable longitudinal
analyses of affect aggregates from social media data by temporally aligning LLM:s.

Ahnert et al. (2024)



Training on Twitter Data to Predict Survey Results

Britain's Mood: Scared

Britain's Mood: Happy
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Figure 3: Affect Aggregates Extracted from Temporal Adapters. We extract answer probabilities by prompting a weekly
fine-tuned Llama 3 8B with the same question wording as in the survey (YouGov 2024a), and compare them to the respective
weekly survey data. The time series are min-max normalized and a 3 week rolling average is applied. The shaded orange area
indicates minimum and maximum LLM answer probabilities across 3 training seeds. Our results descriptively show in the plot
a similar trend of both signals and we find strong positive and significant (p < 0.01) cross-correlation between LLM probabilites

and the survey data. Additional time series are provided in Figures 7 and 8 in the Appendix.

Ahnert et al. (2024)



Fine-tuning Resources

Huggingface

- Hosts open-source LLMs and Datasets
- Lots of libraries for working with LLMs, e.g., transformers, peft, lighteval

EleutherAl

- Non-profit focusing on training and evaluating completely open source
- ThePile: open-source 886 GB dataset designed for training large language models
- Pythia Scaling Suite:
https://huggingface.co/collections/EleutherAl/pythia-scaling-suite-64fb5dfa8c21ebb3db7ad2el
- LMM evaluations: https://github.com/EleutherAl/Im-evaluation-harness




Links

WorkShOP Personal
Jupyter Notebook: LinkedIn

https://github.com/tobihol/survai-finetuning

Paper Preprint:

https://doi.org/10.31219/osf.io/udz28




